Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors.

نویسندگان

  • Zhi-Heng Gou
  • Xiao Wang
  • Wen Wang
چکیده

Gamma-aminobutyric acid (GABA) and glutamate are two important amino acid neurotransmitters widely present in the nervous systems of mammals, insects, round worm, and platyhelminths, while their receptors are quite diversified across different animal phyla. However, the evolutionary mechanisms between the two conserved neurotransmitters and their diversified receptors remain elusive, and antagonistic interactions between GABA and glutamate signal transduction systems, in particular, have begun to attract significant attention. In this review, we summarize the extant results on the origin and evolution of GABA and glutamate, as well as their receptors, and analyze possible evolutionary processes and phylogenetic relationships of various GABAs and glutamate receptors. We further discuss the evolutionary history of Excitatory/Neutral Amino Acid Transporter (EAAT), a transport protein, which plays an important role in the GABA-glutamate "yin and yang" balanced regulation. Finally, based on current advances, we propose several potential directions of future research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ترکیبات ارگانوفسفره و سیستم گابائرژیک مغز

Organophosphorus (OP) compounds are cholinesterase inhibitors widely used as pesticides in agriculture and nerve agents in battlefields. Exposure to these compounds leads to accumulation of acetylcholine at cholinergic synapses and overstimulation of muscarinic and nicotinic receptors by inhibiting the enzyme acetylcholinesterase. Seizure activity is one of the major manifestations of OP poison...

متن کامل

Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system.

Metabotropic glutamate (mGlu) receptors, which include mGlu1-8 receptors, are a heterogeneous family of G-protein-coupled receptors which function to modulate brain excitability via presynaptic, postsynaptic and glial mechanisms. Certain members of this receptor family have been shown to function as presynaptic regulatory mechanisms to control release of neurotransmitters. In general, Gi-couple...

متن کامل

P146: Gamma Aminobutyric Acid (GABA) and its Alterations in Stress

Gamma aminobutyrate (GABA) is a non-protein amino acid that is thought to play an important role in the modulation of the central response to stress. Mechanisms by which GABA may facilitate these responses to stress are metabolic and/or mechanical disruptions. Environmental stresses increase GABA accumulation through cytosolic acidification, induce an acidic pH-dependent activation of glutamate...

متن کامل

Subunit Composition of Neurotransmitter Receptors in the Immature and in the Epileptic Brain

Neuronal activity is critical for synaptogenesis and the development of neuronal networks. In the immature brain excitation predominates over inhibition facilitating the development of normal brain circuits, but also rendering it more susceptible to seizures. In this paper, we review the evolution of the subunit composition of neurotransmitter receptors during development, how it promotes excit...

متن کامل

The components required for amino acid neurotransmitter signaling are present in adipose tissues.

The adipocyte does not only serve as fuel storage but produces and secretes compounds with modulating effects on food intake and energy homeostasis. Although there is firm evidence for a centrally mediated regulation of adipocyte function via the autonomous nervous system, little is known about signaling between adipocytes. Amino acid neurotransmitters are candidates for such paracrine signalin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dong wu xue yan jiu = Zoological research

دوره 33 E5-6  شماره 

صفحات  -

تاریخ انتشار 2012